加入收藏 在线留言 联系我们
关注微信
手机扫一扫 立刻联系商家
全国服务热线15915421161

SIEMENS江苏省无锡市 西门子代理商——西门子华北总代理

更新时间
2024-11-26 07:00:00
价格
请来电询价
西门子总代理
PLC
西门子一级代
驱动
西门子代理商
伺服电机
联系电话
15903418770
联系手机
15915421161
联系人
张经理
立即询价

详细介绍

AI应用场景分析


在工业场景中,较为常见的AI应用需求包括:

❶ 机器人智能导引:

在离散产品组装线上,机器人目前已经广泛应用于产品分拣等,但是,随着AI的智能导引训练的加入。机器人将完成更多、更复杂场景的工作,例如:随机物料的队列排序、配合包装容器变化的捡取,配合加工工站的加工动作—Zui为重要的是,它可以通过更为简单的示教,让机器自动学习,而非传统的既有规则下的编程实现。


图片

图3-AI在制造业中的常用场景


❷ 视觉缺陷分析

视觉的高维度参数中包含了各种可能性,而缺陷包括划痕、斑点、轮廓线的偏差、褶皱、波纹等,可以用于更多的产品缺陷分析。而图形图像的处理,正是AI发挥优势的所在。


❸ 工艺参数优化

这是传统的控制科学与工程研究领域,在过去,囿于算力成本,它并未被大量的应用。随着算力成本的降低,对于各种闭环控制,在PID参数、前馈、滤波等参数的寻优方面,AI可以发挥其作用。通过为历史数据和实时数据建立约束条件,使得参数可以被收敛到更为高效的匹配中。   


❹ 创成式设计

在新的系统设计方法中,创成式设计在机械、动力学领域开始有应用。而随着AGI的快速发展,其在自动化工程领域也有了潜力。它可以为工程师在重复性,以及更为广泛的开源设计寻找创新的灵感,使得设计不仅高效,并且,更具创新性。  


❺ 故障预警

故障早期预警是较为普遍的使用,传统基于断裂力学、疲劳力学等物理建模方式往往需要非常久的积累,对于较为复杂的传动链,它非常依赖于专家及长期的故障复现才能实现预测。而基于数据的方式,在于不依赖这些物理知识下,通过数据的挖掘来实现故障预测与定位,如果能够结合物理方法,两者发挥各自优势,将会让AI发挥事半功倍的效果。  


❻ 排程与调度

随着产品多样性、流程复杂性,以及长流程生产中的复杂组合,背后形成的庞大可能性很难被人工计算,以获得效率Zui高的生产排程和任务调度能力。而AI正是擅长在这复杂的背后,寻找那些路径Zui短和基于评价指标(如成本、能耗、时间Zui优的约束条件)的调度组合。



软硬件架构


在AI应用中,贝加莱可以提供多个层级的IT与OT融合架构 


❶ 根据多个层级的算力需求的硬件架构 

在对算力需求并不高的场景里,嵌入式系统如X20的PLC本身也可以作为一个简单的AI训练和推理单元。


❷ 边缘侧的训练 

对于较高算力,及边缘侧的全局数据训练,可以通过APC/Panel PC方式进行训练。这里,APC本身采用了诸如Intel Apollo Lake算力较高的处理器,对于更高性能要求的,可以采用了aPCI插槽可以插入AI加速器。贝加莱通过与专业的AI硬件(如HAILO)及软件企业(MVtec的HALCON)合作,在其硬件和软件方面集成AI训练方法集。


❸ 云端长周期数据训练 

对于较长周期的大数据训练,贝加莱的PLC/PC可以通过OPC UA Pub/Sub的方式建立与云端的连接。运行在云服务上的模型训练可提供更大容量的数据,更长周期的训练。并通过OPC UA下发至本地推理。


图片

图4-贝加莱的整体AI与控制集成架构


如图4,通过Hypervisor技术的PC,在Linux平台的数据训练方法可以进行本地的AI训练和推理,也可以长周期的云端训练,并通过通信系统部署本地推理。而整个系统可以实现底层数据采集、通信传输、模型训练、现场执行,构成完整的应用闭环。


相关产品

联系方式

  • 电  话:15903418770
  • 联系人:张经理
  • 手  机:15915421161
  • 微  信:15915421161