SIEMENS江苏省无锡市 西门子代理商——西门子华北总代理
| 更新时间 2024-11-16 07:00:00 价格 请来电询价 西门子总代理 PLC 西门子一级代 驱动 西门子代理商 伺服电机 联系电话 15903418770 联系手机 15915421161 联系人 张经理 立即询价 |
AI应用场景分析
在工业场景中,较为常见的AI应用需求包括:
❶ 机器人智能导引:
在离散产品组装线上,机器人目前已经广泛应用于产品分拣等,但是,随着AI的智能导引训练的加入。机器人将完成更多、更复杂场景的工作,例如:随机物料的队列排序、配合包装容器变化的捡取,配合加工工站的加工动作—Zui为重要的是,它可以通过更为简单的示教,让机器自动学习,而非传统的既有规则下的编程实现。
图3-AI在制造业中的常用场景
❷ 视觉缺陷分析
视觉的高维度参数中包含了各种可能性,而缺陷包括划痕、斑点、轮廓线的偏差、褶皱、波纹等,可以用于更多的产品缺陷分析。而图形图像的处理,正是AI发挥优势的所在。
❸ 工艺参数优化
这是传统的控制科学与工程研究领域,在过去,囿于算力成本,它并未被大量的应用。随着算力成本的降低,对于各种闭环控制,在PID参数、前馈、滤波等参数的寻优方面,AI可以发挥其作用。通过为历史数据和实时数据建立约束条件,使得参数可以被收敛到更为高效的匹配中。
❹ 创成式设计
在新的系统设计方法中,创成式设计在机械、动力学领域开始有应用。而随着AGI的快速发展,其在自动化工程领域也有了潜力。它可以为工程师在重复性,以及更为广泛的开源设计寻找创新的灵感,使得设计不仅高效,并且,更具创新性。
❺ 故障预警
故障早期预警是较为普遍的使用,传统基于断裂力学、疲劳力学等物理建模方式往往需要非常久的积累,对于较为复杂的传动链,它非常依赖于专家及长期的故障复现才能实现预测。而基于数据的方式,在于不依赖这些物理知识下,通过数据的挖掘来实现故障预测与定位,如果能够结合物理方法,两者发挥各自优势,将会让AI发挥事半功倍的效果。
❻ 排程与调度
随着产品多样性、流程复杂性,以及长流程生产中的复杂组合,背后形成的庞大可能性很难被人工计算,以获得效率Zui高的生产排程和任务调度能力。而AI正是擅长在这复杂的背后,寻找那些路径Zui短和基于评价指标(如成本、能耗、时间Zui优的约束条件)的调度组合。
软硬件架构
在AI应用中,贝加莱可以提供多个层级的IT与OT融合架构
❶ 根据多个层级的算力需求的硬件架构
在对算力需求并不高的场景里,嵌入式系统如X20的PLC本身也可以作为一个简单的AI训练和推理单元。
❷ 边缘侧的训练
对于较高算力,及边缘侧的全局数据训练,可以通过APC/Panel PC方式进行训练。这里,APC本身采用了诸如Intel Apollo Lake算力较高的处理器,对于更高性能要求的,可以采用了aPCI插槽可以插入AI加速器。贝加莱通过与专业的AI硬件(如HAILO)及软件企业(MVtec的HALCON)合作,在其硬件和软件方面集成AI训练方法集。
❸ 云端长周期数据训练
对于较长周期的大数据训练,贝加莱的PLC/PC可以通过OPC UA Pub/Sub的方式建立与云端的连接。运行在云服务上的模型训练可提供更大容量的数据,更长周期的训练。并通过OPC UA下发至本地推理。
图4-贝加莱的整体AI与控制集成架构
如图4,通过Hypervisor技术的PC,在Linux平台的数据训练方法可以进行本地的AI训练和推理,也可以长周期的云端训练,并通过通信系统部署本地推理。而整个系统可以实现底层数据采集、通信传输、模型训练、现场执行,构成完整的应用闭环。