SIEMENS江苏省南京市 西门子代理商——西门子华东总代理
| 更新时间 2024-11-16 07:00:00 价格 请来电询价 西门子总代理 PLC 西门子一级代 驱动 西门子代理商 伺服电机 联系电话 15903418770 联系手机 15915421161 联系人 张经理 立即询价 |
AI正在成为一种热潮,不断的引发产业的关注。而在制造业,AI同样正在成为各个自动化厂商、机械制造商、用户关注的焦点。作为自动化领域的技术lingdaoqiye,贝加莱一直在关注着AI的进程,并在其产品技术研发、工程实践中,不断的引入AI来解决实际制造业中的问题。
人工智能-隐性知识的挖掘
自动化系统正是用机器和系统来代替和帮助人的工作,而因此,机器和系统需要像人一样的思考。而人的思维方式主要是演绎法和归纳法,我们可以理解为对应了物理建模(Physics-based Modeling)和数据驱动建模(Data-Driven Modeling)。物理建模具有良好的可解释性、可预测、算力低、安全等优点。但是,它并不产生新知识,并且,它的控制是在既定规则下的控制,具有局限性。而工程中更多的隐性的知识,如隐藏在技师脑中的经验,它无法被有效的描述进而复用。并且,工程中必然存在着大量的不确定、非线性问题,尚未被认知,因此,通过数据驱动的建模,包括统计学、机器学习,深度学习的方式是更好的知识挖掘—而“学习”是人工智能的基础能力。
图1-工业知识的软件化过程
图1显示了工业软件的本质在于知识的复用,知识是显性,可被物理化学公式描述的,而经验则是隐性的-需要被挖掘。实际上,自动化系统进行AI的训练具有先天的条件。而现代控制理论的研究中,控制科学与工程领域的专家通常也兼具AI专家。主要在系统辨识、Zui优优化、模糊控制、自适应控制等领域。而工程实践中,AI也作为一种重要的工具辅助问题的解决。
自动化开发工业AI优势
与商业AI不同,工业AI在可解释性、实时性、稳定与安全等有着特殊的需求。这使得自动化领域的工程师,必须依据工业的特殊场景,基于AI的方法和工具,来解决复杂的问题。因此,在工业AI的应用开发中,自动化领域有着先天的优势。这包括了以下几个方面:
❶ 在数据方面的资源
自动化领域有丰富的现场数据采集与处理,包括逻辑、运动控制的扭矩、速度、位置,振动信号、视觉等专用的I/O模块。以及在内存中的中间计算量等,这些数据可以被直接访问,也可以被访问。
❷ 工业通信与信息建模
通信,除了底层的物理层与数据链路层的网络协议,也包括用于信息建模的垂直行业模型,如PackML、EUROMAP、Unimat、Automation ML等。信息模型使得数据被结构化,并提供周期性采样与传输能力。包括OPC UA/MQTT,可以建立在运行的OT系统与边缘、云端系统,经由通信规范来实现连接。例如OPC UA可以通过Pub/Sub机制在OT与云平台之间进行数据的上下行访问。
❸ 机电经验积累的专家
在工业自动化领域,工程师们通常需要对机电对象的物理特性,如对材料的张力特性、机械摩擦、模态等的了解,才能更好的进行控制。而同样,这些经验丰富的机电专家,在AI的数据采集、特征工程、训练模型的评估、参数调校、泛化方面给出自己的洞见(Insight)--这非常关键,因为,工业数据的背后是机电的强耦合关系,这些关系的判断,对于AI如何去训练具有非常重要的指导意义。
图2-自动化在工业AI应用中的优势
❹ 智能执行
AI可以让机器变得更聪明,但是,聪明的大脑还需要有力的臂膀去在现场执行。基于工业的控制系统、运动控制、输送技术—AI优化的参数、模型,可以被本地推理,并发送给智能的执行机构去执行。而工业自动化可以现场执行—实现整个的逻辑闭环。