广东湘恒智能科技有限公司
主营产品: 西门子PLC代理商,plc变频器,伺服电机,人机界面,触摸屏,线缆,DP接头
刻蚀工艺流程及相关问题
发布时间:2024-07-04

4.刻蚀工艺流程及相关问题

图片

图4. 刻蚀相关工艺流程


刻蚀工艺流程始于形成薄膜,在其上施加光刻胶,并进行曝光、显影、刻蚀、灰化、清洁、检查和离子注入等步骤,以形成三个Tr端子,这是半导体制造的核心工艺。如果在显影过程中不能顺利切割光刻胶,则剩余的光刻胶会妨碍刻蚀。如果在刻蚀过程中未能对目标层进行充分刻蚀,则不能按计划注入离子,因为杂质会妨碍离子注入。如果干法刻蚀后未能彻底清除残留的聚合物,也会产生同样的后果。如果由于时间控制失败,等离子体的离子气体量太大或薄膜刻蚀过度,会对下层薄膜造成物理性损伤。

因此,在干刻蚀工艺中精准控制终点(EOP:End of Point)至关重要。彻底检查刻蚀条件以及灰化和清洁过程也非常重要。如果晶圆刻蚀不均匀,则晶圆可能遭到退货,而且刻蚀不足比过度刻蚀更为致命。

由于刻蚀工艺涉及的步骤非常复杂,我打算将其分为两部分进行阐述。在这一部分中,我们阐述了刻蚀技术的历史和发展方向。在下一部分中,我们将对等离子体和刻蚀之间的关系、RIE、刻蚀方法、纵横比以及刻蚀速度进行详细阐述。

早期的湿法刻蚀促进了清洁(Cleansing)或灰化(Ashing)工艺的发展。而在如今,使用等离子体(Plasma)的干法刻蚀(Dry Etching)方法已经成为主流刻蚀工艺。等离子体由电子、阳离子和自由基(Radical)粒子组成。在等离子体上施加的能量使中性状态下的源气体最外层电子发生剥离,从而将这些电子转化为阳离子。此外,还可以通过施加能量来剥离分子中不完美的原子,形成电中性的自由基。干法刻蚀利用构成等离子体的阳离子和自由基,其中阳离子具有各向异性(适用于某一方向上的刻蚀),自由基具有各向同性(适用于所有方向上的刻蚀)。自由基的数量要远远超过阳离子的数量。在这种情况下,干法刻蚀本应该像湿法刻蚀一样具有各向同性。然而,正是干法刻蚀的各向异性刻蚀使超小型化电路成为可能。这是什么原因呢?另外,阳离子和自由基的刻蚀速度非常慢,那么面对这一缺点,我们又该如何将等离子体刻蚀方法应用到批量生产上呢?


展开全文
商铺首页 拨打电话 QQ联系 发送询价