我们了解了PID控制系统是怎么回事之后,再来了解PID这三个参数的作用就会相对简单了。首先我们从全局的眼光来看这个公式,如图3所示:
①u(t) :输出曲线,pid输出值随时间的变化曲线。也就是最终输出信号的大小。
②Kp:比例系数。这个系数由人为给定,可以大也可以小,我们要调节PID参数的话,Kp这个系数尤为重要。
③e(t) :偏差,设定值与实际值的偏差。
④Ti:积分时间。
⑤Td:微分时间。
图3:PID公式图
在图3这个公式中,其中u(t)和e(t)是比较好理解的,剩下的就是Kp、Ti、Td参数,这三个参数正是我们需要人为调节的(当然,很多设备也有自动调节的功能,比如PLC就有自动整定这三个参数的功能)。但是在这个公式中,我们可以得到几个结论。
第一个就是:当e(t)为0则整个PID结果为0,也就是偏差为0时,PID没有输出,从而说明了PID输出一定是需要有偏差的;
第二:P+I+D的结果等于u(t)。
01
比例系数:Kp
比例调节就是根据当前的值与目标值的差值,乘以了一个Kp的系数,来得到一个输出值,这输出值直接影响了下次当前值的变化。公式为:U(t)=Kp*e(t)
举例:(1) 如图4所示,有个水池,需要时刻保持1m的高度,目前水桶里有0.2m的水。
图4:水池示意图
那么采用P(比例)的方法加水:即每次测量与1m的误差,并加入与误差成比例的水量,比如设Kp=0.5:
第一次,误差是1-0.2=0.8m,那么加入水量是:Kp*0.8= 0.4mm,
第二次,误差是1-0.6 =0.4m那么加入水量是:Kp*0.4=0.2m。
按照此种方式,我们加若干次水,然后绘制成表格(如图5)及曲线图(如图6)。我们可以看到加到了第8次水之后,基本上就没有误差,基于误差的输出也只有0.00313。而从图6的曲线图也可以看到,从第6次开始,水位基本上就是趋于稳定的。那么,这不正是我们想看到的结果吗?预期是需要保持1m的高度,加了8次水刚好就到了1m左右。但是在实际的工程中,可能是一边放水,一边往水池里加水。如图4所示,如果说有人把水池的水龙头打开了一边加水一边放水,还是加8次水就刚好到了1m的位置吗?
图5
图6
我们一起来分析一边放水一边加水的这种情况。有个水池下面安装了水龙头,仍需保持1m 的高度,目前水桶里有0.2m 的水,但每次加水都会流出0.1m。
我们仍然设Kp=0.5
第一次:误差是 1-0.2=0.8m,那么加入水量是 Kp*0.8=0.4m.最终水位时是0.4+0.2-0.1=0.5
第二次:误差是1-0.5 =0.5mm 那么加入水量是 Kp*0.5=0.25m,最终水位是0.5+0.25-0.1=0.65
我们按照这种方式推算,绘制成表格(如图7)及曲线图(如图8)。从表格和曲线中可以看到,从第6次开始水位基本上稳定在0.79左右,也就是水再也上不去了,这其实也很好理解,因为每次加的水量基本上等于流出的水量(0.1m),所以水位基本上就没上升,也没下降。那么这种情况呢,就叫做稳态误差,这也就是比例调节的不足,需要积分参数来弥补。当然,有的人会提出,那是不是把Kp这个参数往大了调,是不是就可以让水时刻稳定在1m的位置呢?
为了验证,我们把Kp修改成2,而不再是0.5了,那这个表格(如图9所示)和曲线(图10所示)。可以看到比例控制引入了稳态误差,且无法消除。比例常数增大可以减小稳态误差,但如果太大则引起系统震荡,不稳定。
图7
图8
图9
图10
02
积分系数:Ki
为了消除稳态误差, 加入积分,积分控制就是将历史误差全部加起来乘以积分常数。公式为Ki*( e(1)+ e(2)+ e(3)……)。e(1)代表的是第一次误差,e(2)代表的是第二次误差,依次类推。
还是先设Kp=0.5,Ki= 0.3
第一次: 误差为0.8, 比例部分 Kp*0.8=0.4, 积分部分 Ki*(e(1))= 0.24,加入水量u为0.4+0.24=0.64,最终水位0.2+0.64-0.1= 0.74m。
第二次: 误差为0.26,比例部分Kp * 0.26=0.13,积分部分Ki*(e(1)+e(2))= 0.318,加入水量u为 0.13+0.318=0.448,最终水位:0.74+0.448-0.1=1.088m。将推算的数据绘制成表格(如图11)及曲线图(如图12)。从表格及曲线图可以看到,水位第一次到第5次水是有些波动,但是随着积分项发挥作用,水位逐渐趋于稳定在1m左右。这就完美解决了比例项的弊端(存在稳态误差)。
图11
- 被问了800遍,电气工程师必备的六大技能都在这了 2024-11-06
- 一文了解 | 机器学习、深度学习、人工智能的区别与联系 2024-11-06
- 模型的复杂性 2024-11-06
- 实战讲解|CBOOT的秘密——自举电容 2024-11-06
- 【盘点】西门子主流PLC和编程软件 2024-11-06
- 工业以太网概述 2024-11-06
- 西门子软件安装疑难杂症之Windows 11上无法安装WinCC 2024-11-06
- 西门子欲出售电机业务,德力西全资收购施耐德子公司 2024-11-06
- 西门子高管怂恿对中国风电下手:要让他们在欧洲难以立足 2024-11-06
- 西门子 | 出售旗下软件公司 2024-11-06